
Automated Dog Breed Identification from User-Uploaded Images

Ethan Cloin, John Butoto, Max Pilot

Dept. of Computing and Information Science University of North Florida, Jacksonville, FL, USA

Abstract

Our application offers a prediction of dog breed on an image
uploaded by the user. The application was developed in two
main stages. First, we collected data from a public API, Pet-
Finder. We collected data for dogs in the Jacksonville area,
including images, names, and breeds. This data was stored in
a series of JSON files and later parsed into a CSV using Py-
thon. We used this dataset and the Stanford Breed dataset to
fine-tune an Xceptionet Convolutional Neural Network. This
fine-tuned model generates a class prediction for the provided
dog image. We exported the best performing fine-tuned
model to a file and connected it to a Flask web application.
The application includes a form to submit an image and some
relevant information about the pet.

Code — https://github.com/EthanCloin/adoption-blurb-gen-
erator
Datasets
Stanford Dogs Dataset — https://www.kaggle.com/da-
tasets/jessicali9530/stanford-dogs-dataset
PetFinder— https://www.petfinder.com/developers/v2/docs/

Introduction

 In recent years, the use of machine learning and computer

vision techniques for image classification has seen rapid

growth, finding applications in areas ranging from

healthcare to pet adoption services. This project focuses on

building an application capable of predicting a dog's breed

from an uploaded image. Our goal was to create an accessi-

ble and efficient tool that could assist users, including pet

owners and adoption centers, in identifying dog breeds

quickly and accurately. We aimed to have a high-perform-

ing machine learning model, alongside a functional web in-

terface.

 The application was developed through a two-stage pro-

cess. Initially, we created a dataset by gathering real-world

dog images and breed information from the PetFinder API.

The API allowed us to send a request for information on pets

based on a number of parameters. The data we collected was

primarily on dogs in the Jacksonville area. This data was

supplemented with the well-established Stanford Dog Da-

taset to ensure a robust training set. We then fine-tuned a

pre-trained deep learning model, XceptionNet, to perform

the breed classification task. The resulting model was inte-

grated into a Flask web application that allows users to sub-

mit an image and receive a breed prediction.

Methodologies/Algorithms/Approaches

In this section, we first describe our convolutional neural

network–based dog breed classifier, which leverages a fro-

zen XceptionNet backbone and a lightweight classification

head to assign fine-grained breed labels to cropped canine

images. We then turn to our dog detector, built on the

YOLOv11 architecture, that locates and crops dog in-

stances in images with high precision and recall. Finally,

we present the end-to-end application that unifies these two

components: upon uploading, the YOLOv11 module iden-

tifies if an image is a dog, and the breed classifier immedi-

ately predicts the specific breed, all within a responsive

web interface.

Dog breed classifier model

 We implemented a convolutional neural network (CNN)

pipeline for dog breed classification using the Stanford Dogs

Dataset (Khosla et al. 2011). Using the powerful feature-ex-

traction capabilities of the XceptionNet architecture (Chol-

let and François 2017), the model was trained end-to-end

(with a frozen base) on 120 dog breeds, achieving high ac-

curacy through careful data preparation, training strategies,

and evaluation.

Dataset Acquisition & Preparation

 We acquired the Stanford Dogs Dataset using the Kaggle-

hub API, ensuring a reproducible and up‐to‐date data pull.

Each class folder originally adhered to the naming conven-

tion (e.g., “n02085620‐Chihuahua”); thus, we applied a sim-

ple regular expression to strip the numeric prefix and yield

human‐readable breed labels (e.g., “Chihuahua”). To sup-

port model evaluation, we partitioned the renamed images

into training, validation, and test subsets on a per‐breed ba-

sis, using a 70 %/15 %/15 % split with scikit‐learn’s

train_test_split and a fixed random seed (42) to ensure de-

terministic results.

https://github.com/EthanCloin/adoption-blurb-generator
https://github.com/EthanCloin/adoption-blurb-generator
https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset
https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset
https://www.petfinder.com/developers/v2/docs/

 All images were uniformly rescaled by a factor of 1/255

before ingestion into the network. Three Keras ImageDat-

aGenerator pipelines were instantiated, train generator (with

shuffling enabled), validation generator (shuffle disabled),

and a test generator (shuffle disabled) each targeting

299×299 pixels (the XceptionNet default) and operating

with a batch size of 32. This setup facilitated efficient, on‐

the‐fly data loading and ensured consistent preprocessing

across training and evaluation phases.

Model Architecture

The core of our model employs the XceptionNet convolu-

tional neural network as a frozen feature extractor. Input im-

Figure 1: Proposed CNN architecture for dog‐breed classification,

comprising a frozen XceptionNet backbone (output 10 × 10 ×

2048), global average pooling (2048), dropout (rate = 0.7), and a

final dense‐SoftMax layer (120 classes).

ages of size 299 × 299 × 3 are fed directly into the Xcep-

tionNet base pretrained on ImageNet (Deng et al. 2009) with

its classification head removed, ensuring that the rich, hier-

archical feature representations learned on large‐scale data

are used without further modification. By freezing all layers

of the base model, we dramatically reduce the number of

trainable parameters, which both accelerate convergence

and mitigate overfitting on the relatively small Stanford

Dogs dataset.

 On top of the frozen backbone, we append a lightweight

classification head tailored for breed classification. Global

average pooling condenses the spatial feature maps into a

fixed‐length feature vector, preserving channel‐wise activa-

tions while reducing parameter count. A dropout layer with

a rate of 0.7 introduces stochastic regularization, preventing

co‐adaptation of features and further combating overfitting.

Finally, a dense layer with SoftMax activation produces per‐

class probability estimates across all dog breeds, enabling

end‐to‐end training of the classification head while retaining

the expressive power of the pretrained convolutional base.

Training Setup

We trained the network for 10 epochs using the Adam opti-

mizer with an initial learning rate of 0.001, minimizing cat-

egorical cross‐entropy and tracking accuracy as our primary

metric. To ensure convergence, we employed three

callbacks: a ModelCheckpoint that saves the best weights

based on validation accuracy, an EarlyStopping criterion

with a patience of five epochs on validation loss (restoring

the best weights upon termination), and a ReduceLROnPlat-

eau scheduler that reduces the learning rate by half if vali-

dation loss fails to improve over three consecutive epochs,

with a floor of 1 × 10⁻⁶.

Evaluation Metrics

 We assess model performance using standard classifica-

tion metrics:

Overall Accuracy

This tells us “Across all test images, what fraction did

the model classify correctly?”

It’s the total count of correct predictions (sum of all TP’s)

divided by the total number of samples.

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

Where:

True Positives (TP) is the count of positive instances cor-

rectly identified

False Positives (FP) is the count of negative instances in-

correctly labelled positive

True Negatives (TN) is the count of negative instances

correctly identified

False Negatives (FN) is the count of positive instances

missed by the model

Precision n

This tells us “Of everything the model labelled as breed

n, what fraction was actually breed n?”. High precision

means few false alarms: when the model calls a dog breed

n, it’s usually right.

Precisioni =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
(2)

Recall n

 This tells us “Of all the real instances of breed n, what

fraction did the model successfully detect as n?”. High re-

call means the model misses very few true n’s.

Recalli =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

(3)

F₁-score ₙ

 This is the harmonic mean of precision and recall for

breed n. It balances the trade-off: a high F₁ only occurs if

both precision and recall are high.

𝐹1,𝑖 = 2 ×
Precisioni  ×  Recalli

Precisioni + Recalli
(4)

Results

The final classifier exhibits strong overall performance

while retaining good per‐breed consistency. After training

for 10 epochs on our curated dog‐breed dataset, the model

converged to a training accuracy of 93.20 % and achieved

90.20 % validation accuracy on the held‐out set Fig. 2. This

3-point gap suggests that the learned features generalize

well to unseen images. The training loss drops sharply dur-

ing the initial epochs and continues to decline, while the val-

idation loss remains relatively flat with a slight downward

trend, indicating effective learning with maintained general-

ization Fig. 3.

A closer inspection of the per‐breed metrics Fig. 4, Fig. 5,

Fig. 6 shows that most classes had a high Precision, Recall,

and F₁‐scores. In the Precision bar chat Fig. 4, over half of

the breeds cluster above 0.95, with a long righthand tail

reaching 1.00 indicating zero false positives for many clas-

ses. Similarly, Recall values Fig. 5 are predominantly above

0.90, and the F₁‐distribution Fig. 6 mirrors this trend, with

most breeds scoring above 0.92. Only a handful of rarer

breeds fall into the 0.55–0.70 range on any one metric, high-

lighting those specific classes as candidates for targeted data

augmentation or architectural refinement.

Taken together, these results demonstrate that our model

not only learns discriminative representations for the major-

ity of dog breeds but also maintains balanced Precision and

Recall at scale.

Figure 2: Epoch-wise curves of training (blue) and validation (or-

ange) accuracy, illustrating convergence and generalization trends

over 10 epochs.

Figure 3: Epoch-wise curves of training (blue) and validation (or-

ange) loss, demonstrating effective reduction in training loss

alongside stable validation performance.

Figure 4: Bar chart showing per-class precision scores across 120

dog breeds, highlighting the distribution and concentration of

high-precision classifications.

Figure 5: Bar chart showing per-class recall scores across 120 dog

breeds, illustrating the range of completeness in breed detection.

Figure 6: Bar chart showing per-class F₁ scores across 120 dog

breeds, summarizing the balance between precision and recall for

overall classification performance.

The small disparity between training and validation accu-

racy (≈ 3 %) confirms good generalization, while the tight

clustering of F₁‐scores shows consistent performance across

all breed categories. In future work, we will further improve

the low‐performing tail by adding more examples of those

underrepresented classes and applying data augmentation

techniques.

Dog detector

 In addition to the breed classifier model, we also devel-

oped a second, more simplistic model that would detect if

an image contains a dog, how accurately it predicted it. The

model was trained on the images provided by the Stanford

Dogs dataset. We created a main YAML file that points to

the image folder used for training and validation, followed

by the number of classes that it will use. For this project,

only one class was used, dog, due to the model only detect-

ing if the image contains a dog or not.

 For each image, we also had to create text files containing

labels for the images. These labels included:

Class ID: 0 for “dog”

y-center: The horizontal center of the bounding boxes

x-center: The vertical center of the bounding boxes

Width: The normalized width of the images

Height: The normalized height of the images

If the result returns true, the model gives a confidence value

score, saying that it does contain a dog. Otherwise, it will

return a confidence score of zero if the result returns false,

and there is no dog in the image. The result then gets console

logged into our main application file.

Full web application

The trained model was successfully deployed as part of a

Flask application. Flask is a ‘micro-framework’ designed to

help developers quickly stand-up APIs with minimal boiler-

plate. The simplest Flask application instantiates a Flask

class instance and uses the decorator pattern to transform a

Python method into an HTTP endpoint. Our application in-

stantiates the Flask application upon startup and adds a

Blueprint to that app for our main controller. The Blueprint

behaves very similarly to the app instance, allowing us to

use a decorator to assign routes. The main benefit of using

Figure 7: Flask route definitions in main.py, illustrating the use of

a Blueprint to register the root ("/") and upload ("/upload") end-

points.

this blueprint is keeping routes which differ in purpose com-

partmentalized to separate, logical locations in the applica-

tion structure.

As seen above, our application exposes an “/upload” end-

point, returning an HTML template which included a form

with an input field accepting a JPEG image. Upon upload,

the image is assigned a UUID and stored in the app in-

stance’s static folder. The model file references the file di-

rectly from that location.

After the Dog Breed Classifier model performs a prediction

on the supplied image, the application creates a new record

and inserts it into the SQLite database. SQLite is another

lightweight tool, allowing us to use SQL syntax to persist

data into a file instead of writing to a database in a separate

server. SQLite would struggle to support multiple clients as

it does not support concurrent writing on but neatly suits our

purposes for this demo application.

The results from our prediction model are formatted into a

string response which is included as context for the “/view-

result” template. The result view displays the uploaded im-

age, the breed prediction and confidence, and also includes

a feedback form. The purpose of the feedback form is to al-

low users to correct inaccurate classifications and ultimately

support crowd-sourced improvements on our model. The

feedback form accepts input for whether the prediction was

correct and a text input for the correct, with options powered

by the same class list our model trained on.

This feedback form makes use of another compact and pow-

erful piece of web technology, HTMX. HTMX is a JavaS-

cript library which extends the capabilities of HTML. After

installing the library, there are new attributes available in

Figure 8: Snippet of the HTMX-enhanced feedback form in pet-

result.html, showing dynamic breed–list loading upon checkbox

interaction.

HTML which enhance the hypermedia to more flexibly in-

teract directly with our Flask server. In our case, we wrap

the form checkbox input in a div element, which includes

hx-* attributes provided by HTMX. These attributes roughly

translate to “the first time this element is clicked, GET the

HTML from the ‘/breeds-list’ and insert it before the next

button element”. The HTML stored at that endpoint includes

another input element, along with a datalist element with all

the human-readable dog breeds upon which the model was

trained. The full application code is available in the zip and

on GitHub.

Figure 9: Landing page of the Breed Predictor application, featur-

ing a prominent call-to-action for uploading a dog image.

Figure 10: Image upload form, which collects the pet’s name,

age, gender, and photo before submission to the server.

In Figures 9–11, we illustrate the end-user workflow of our

web application. The landing page Fig. 9 invites users to

discover their dog’s breed via a simple “Get Started” but-

ton. Upon initiation, the upload form Fig. 10 asks for basic

pet metadata; name, age, gender and a JPEG image, which

the server assigns a UUID and stores for model inference.

Finally, the result view Fig. 11 presents the YOLOv11 dog

detection with a confidence score (e.g., 91.25% certainty)

of how strongly the model thinks the image is a dog along-

side the breed classifier’s prediction and corresponding

confidence scores (e.g., 98.85 % for “Samoyed”). It also

includes an inline feedback form that dynamically loads

the full breed list to capture user-provided corrections. This

seamless integration of detection, classification, and

crowd-sourced feedback supports continuous model im-

provement in a user-friendly interface.

Figure 11: Prediction result view, displaying the detected dog

crop, YOLOv11 detection confidence, breed classification with

SoftMax confidence, and an HTMX-powered feedback form for

user correction.

Conclusion

This project presents a comprehensive and effective ap-

proach to automated dog breed classification. By leveraging

a frozen XceptionNet backbone with a custom classification

head, the model achieved high predictive performance, at-

taining 93.20% training accuracy and 90.20% validation ac-

curacy.

Performance analysis across breed classes indicated strong

generalization, with precision, recall, and F₁-scores exceed-

ing 0.90 for the majority of breeds. A small subset of un-

derrepresented classes exhibited lower performance, sug-

gesting potential avenues for future work in data augmenta-

tion and class balancing.

The system was deployed as an end-to-end application using

a Python-based technology stack. The backend was imple-

mented with Flask and SQLite, ensuring lightweight data

persistence and seamless model integration. The frontend

utilized HTMX to facilitate responsive image submissions,

allowing real-time inference and display of results. Overall,

the project demonstrates the viability of combining modern

deep learning architectures with web technologies to deliver

accessible and accurate breed identification tools for public

use.

References

Khosla, Aditya, Nityananda Jayadevaprakash, Bangpeng Yao, and
Fei-Fei Li. "Novel dataset for fine-grained image categorization:
Stanford dogs." In Proc. CVPR workshop on fine-grained visual
categorization (FGVC), vol. 2, no. 1. 2011.

Chollet, François. "Xception: Deep learning with depth-

wise separable convolutions." In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp.

1251-1258. 2017.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. "Imagenet: A large-scale hierarchical image

database." In 2009 IEEE conference on computer vision

and pattern recognition, pp. 248-255. Ieee, 2009.

“htmx - high power tools for html,” htmx.org.

https://htmx.org/

Flask, “Welcome to Flask — Flask Documentation

(3.0.x),” Palletsprojects.com, 2010. https://flask.palletspro-

jects.com/en/stable/

SQLite, “SQLite Home Page,” Sqlite.org, 2019.

https://sqlite.org/index.html

https://htmx.org/
https://flask.palletsprojects.com/en/stable/
https://flask.palletsprojects.com/en/stable/

