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Abstract 

Our application offers a prediction of dog breed on an image 
uploaded by the user. The application was developed in two 
main stages. First, we collected data from a public API, Pet-
Finder. We collected data for dogs in the Jacksonville area, 
including images, names, and breeds. This data was stored in 
a series of JSON files and later parsed into a CSV using Py-
thon. We used this dataset and the Stanford Breed dataset to 
fine-tune an Xceptionet Convolutional Neural Network. This 
fine-tuned model generates a class prediction for the provided 
dog image. We exported the best performing fine-tuned 
model to a file and connected it to a Flask web application. 
The application includes a form to submit an image and some 
relevant information about the pet.   
 
  
Code — https://github.com/EthanCloin/adoption-blurb-gen-
erator  
Datasets  
Stanford Dogs Dataset — https://www.kaggle.com/da-
tasets/jessicali9530/stanford-dogs-dataset 
PetFinder— https://www.petfinder.com/developers/v2/docs/ 
 

Introduction  

 In recent years, the use of machine learning and computer 

vision techniques for image classification has seen rapid 

growth, finding applications in areas ranging from 

healthcare to pet adoption services. This project focuses on 

building an application capable of predicting a dog's breed 

from an uploaded image. Our goal was to create an accessi-

ble and efficient tool that could assist users, including pet 

owners and adoption centers, in identifying dog breeds 

quickly and accurately. We aimed to have a high-perform-

ing machine learning model, alongside a functional web in-

terface.   

   

 The application was developed through a two-stage pro-

cess. Initially, we created a dataset by gathering real-world 

dog images and breed information from the PetFinder API. 

The API allowed us to send a request for information on pets 

based on a number of parameters. The data we collected was 

primarily on dogs in the Jacksonville area. This data was 

supplemented with the well-established Stanford Dog Da-

taset to ensure a robust training set. We then fine-tuned a 

pre-trained deep learning model, XceptionNet, to perform 

the breed classification task. The resulting model was inte-

grated into a Flask web application that allows users to sub-

mit an image and receive a breed prediction. 

 

Methodologies/Algorithms/Approaches  

In this section, we first describe our convolutional neural 

network–based dog breed classifier, which leverages a fro-

zen XceptionNet backbone and a lightweight classification 

head to assign fine-grained breed labels to cropped canine 

images. We then turn to our dog detector, built on the 

YOLOv11 architecture, that locates and crops dog in-

stances in images with high precision and recall. Finally, 

we present the end-to-end application that unifies these two 

components: upon uploading, the YOLOv11 module iden-

tifies if an image is a dog, and the breed classifier immedi-

ately predicts the specific breed, all within a responsive 

web interface. 

Dog breed classifier model   

 We implemented a convolutional neural network (CNN) 

pipeline for dog breed classification using the Stanford Dogs 

Dataset (Khosla et al. 2011). Using the powerful feature-ex-

traction capabilities of the XceptionNet architecture (Chol-

let and François 2017), the model was trained end-to-end 

(with a frozen base) on 120 dog breeds, achieving high ac-

curacy through careful data preparation, training strategies, 

and evaluation. 

 

Dataset Acquisition & Preparation  

 We acquired the Stanford Dogs Dataset using the Kaggle-

hub API, ensuring a reproducible and up‐to‐date data pull. 

Each class folder originally adhered to the naming conven-

tion (e.g., “n02085620‐Chihuahua”); thus, we applied a sim-

ple regular expression to strip the numeric prefix and yield 

human‐readable breed labels (e.g., “Chihuahua”). To sup-

port model evaluation, we partitioned the renamed images 

into training, validation, and test subsets on a per‐breed ba-

sis, using a 70 %/15 %/15 % split with scikit‐learn’s 

train_test_split and a fixed random seed (42) to ensure de-

terministic results.  

https://github.com/EthanCloin/adoption-blurb-generator
https://github.com/EthanCloin/adoption-blurb-generator
https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset
https://www.kaggle.com/datasets/jessicali9530/stanford-dogs-dataset
https://www.petfinder.com/developers/v2/docs/


 All images were uniformly rescaled by a factor of 1/255 

before ingestion into the network. Three Keras ImageDat-

aGenerator pipelines were instantiated, train generator (with 

shuffling enabled), validation generator (shuffle disabled), 

and a test generator (shuffle disabled) each targeting 

299×299 pixels (the XceptionNet default) and operating 

with a batch size of 32. This setup facilitated efficient, on‐

the‐fly data loading and ensured consistent preprocessing 

across training and evaluation phases. 

 

Model Architecture 

The core of our model employs the XceptionNet convolu-

tional neural network as a frozen feature extractor. Input im- 

 

Figure 1: Proposed CNN architecture for dog‐breed classification, 

comprising a frozen XceptionNet backbone (output 10 × 10 × 

2048), global average pooling (2048), dropout (rate = 0.7), and a 

final dense‐SoftMax layer (120 classes). 

ages of size 299 × 299 × 3 are fed directly into the Xcep-

tionNet base pretrained on ImageNet (Deng et al. 2009) with 

its classification head removed, ensuring that the rich, hier-

archical feature representations learned on large‐scale data 

are used without further modification. By freezing all layers 

of the base model, we dramatically reduce the number of 

trainable parameters, which both accelerate convergence 

and mitigate overfitting on the relatively small Stanford 

Dogs dataset.  

 On top of the frozen backbone, we append a lightweight 

classification head tailored for breed classification. Global 

average pooling condenses the spatial feature maps into a 

fixed‐length feature vector, preserving channel‐wise activa-

tions while reducing parameter count. A dropout layer with 

a rate of 0.7 introduces stochastic regularization, preventing 

co‐adaptation of features and further combating overfitting. 

Finally, a dense layer with SoftMax activation produces per‐

class probability estimates across all dog breeds, enabling 

end‐to‐end training of the classification head while retaining 

the expressive power of the pretrained convolutional base. 

 

Training Setup  

We trained the network for 10 epochs using the Adam opti-

mizer with an initial learning rate of 0.001, minimizing cat-

egorical cross‐entropy and tracking accuracy as our primary 

metric. To ensure convergence, we employed three 

callbacks: a ModelCheckpoint that saves the best weights 

based on validation accuracy, an EarlyStopping criterion 

with a patience of five epochs on validation loss (restoring 

the best weights upon termination), and a ReduceLROnPlat-

eau scheduler that reduces the learning rate by half if vali-

dation loss fails to improve over three consecutive epochs, 

with a floor of 1 × 10⁻⁶.  

 

Evaluation Metrics  

 We assess model performance using standard classifica-

tion metrics: 

 

Overall Accuracy 

This tells us “Across all test images, what fraction did 

the model classify correctly?” 

It’s the total count of correct predictions (sum of all TP’s) 

divided by the total number of samples. 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1) 

 

 

Where: 

True Positives (TP) is the count of positive instances cor-

rectly identified 

False Positives (FP) is the count of negative instances in-

correctly labelled positive 

True Negatives (TN) is the count of negative instances 

correctly identified 

False Negatives (FN) is the count of positive instances 

missed by the model 

 

Precision n 

This tells us “Of everything the model labelled as breed 

n, what fraction was actually breed n?”. High precision 

means few false alarms: when the model calls a dog breed 

n, it’s usually right. 

 

Precisioni =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
(2) 

 



Recall n 

    This tells us “Of all the real instances of breed n, what 

fraction did the model successfully detect as n?”. High re-

call means the model misses very few true n’s. 

 

Recalli =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

(3) 

 

F₁-score ₙ 

    This is the harmonic mean of precision and recall for 

breed n. It balances the trade-off: a high F₁ only occurs if 

both precision and recall are high. 

 

𝐹1,𝑖 = 2 ×
Precisioni  ×  Recalli

Precisioni + Recalli
(4) 

 

Results 

The final classifier exhibits strong overall performance 

while retaining good per‐breed consistency. After training 

for 10 epochs on our curated dog‐breed dataset, the model 

converged to a training accuracy of 93.20 % and achieved 

90.20 % validation accuracy on the held‐out set Fig. 2. This 

3-point gap suggests that the learned features generalize 

well to unseen images. The training loss drops sharply dur-

ing the initial epochs and continues to decline, while the val-

idation loss remains relatively flat with a slight downward 

trend, indicating effective learning with maintained general-

ization Fig. 3. 

A closer inspection of the per‐breed metrics Fig. 4, Fig. 5, 

Fig. 6 shows that most classes had a high Precision, Recall, 

and F₁‐scores. In the Precision bar chat Fig. 4, over half of 

the breeds cluster above 0.95, with a long righthand tail 

reaching 1.00 indicating zero false positives for many clas-

ses. Similarly, Recall values Fig. 5 are predominantly above 

0.90, and the F₁‐distribution Fig. 6 mirrors this trend, with 

most breeds scoring above 0.92. Only a handful of rarer 

breeds fall into the 0.55–0.70 range on any one metric, high-

lighting those specific classes as candidates for targeted data 

augmentation or architectural refinement.  

Taken together, these results demonstrate that our model 

not only learns discriminative representations for the major-

ity of dog breeds but also maintains balanced Precision and 

Recall at scale. 

Figure 2: Epoch-wise curves of training (blue) and validation (or-

ange) accuracy, illustrating convergence and generalization trends 

over 10 epochs. 

 

Figure 3: Epoch-wise curves of training (blue) and validation (or-

ange) loss, demonstrating effective reduction in training loss 

alongside stable validation performance. 

Figure 4: Bar chart showing per-class precision scores across 120 

dog breeds, highlighting the distribution and concentration of 

high-precision classifications. 

Figure 5: Bar chart showing per-class recall scores across 120 dog 

breeds, illustrating the range of completeness in breed detection. 

Figure 6: Bar chart showing per-class F₁ scores across 120 dog 

breeds, summarizing the balance between precision and recall for 

overall classification performance. 

The small disparity between training and validation accu-

racy (≈ 3 %) confirms good generalization, while the tight 

clustering of F₁‐scores shows consistent performance across 



all breed categories. In future work, we will further improve 

the low‐performing tail by adding more examples of those 

underrepresented classes and applying data augmentation 

techniques.  

Dog detector 

 In addition to the breed classifier model, we also devel-

oped a second, more simplistic model that would detect if 

an image contains a dog, how accurately it predicted it. The 

model was trained on the images provided by the Stanford 

Dogs dataset. We created a main YAML file that points to 

the image folder used for training and validation, followed 

by the number of classes that it will use. For this project, 

only one class was used, dog, due to the model only detect-

ing if the image contains a dog or not. 

 For each image, we also had to create text files containing 

labels for the images. These labels included: 

Class ID: 0 for “dog” 

y-center: The horizontal center of the bounding boxes 

x-center: The vertical center of the bounding boxes 

Width: The normalized width of the images 

Height: The normalized height of the images  

If the result returns true, the model gives a confidence value 

score, saying that it does contain a dog. Otherwise, it will 

return a confidence score of zero if the result returns false, 

and there is no dog in the image. The result then gets console 

logged into our main application file. 

Full web application 

The trained model was successfully deployed as part of a 

Flask application. Flask is a ‘micro-framework’ designed to 

help developers quickly stand-up APIs with minimal boiler-

plate. The simplest Flask application instantiates a Flask 

class instance and uses the decorator pattern to transform a 

Python method into an HTTP endpoint. Our application in-

stantiates the Flask application upon startup and adds a 

Blueprint to that app for our main controller. The Blueprint 

behaves very similarly to the app instance, allowing us to 

use a decorator to assign routes. The main benefit of using  

Figure 7: Flask route definitions in main.py, illustrating the use of 

a Blueprint to register the root ("/") and upload ("/upload") end-

points. 

this blueprint is keeping routes which differ in purpose com-

partmentalized to separate, logical locations in the applica-

tion structure. 

As seen above, our application exposes an “/upload” end-

point, returning an HTML template which included a form 

with an input field accepting a JPEG image. Upon upload, 

the image is assigned a UUID and stored in the app in-

stance’s static folder. The model file references the file di-

rectly from that location.  

 

After the Dog Breed Classifier model performs a prediction 

on the supplied image, the application creates a new record 

and inserts it into the SQLite database. SQLite is another 

lightweight tool, allowing us to use SQL syntax to persist 

data into a file instead of writing to a database in a separate 

server. SQLite would struggle to support multiple clients as 

it does not support concurrent writing on but neatly suits our 

purposes for this demo application.  

 

The results from our prediction model are formatted into a 

string response which is included as context for the “/view-

result” template. The result view displays the uploaded im-

age, the breed prediction and confidence, and also includes 

a feedback form. The purpose of the feedback form is to al-

low users to correct inaccurate classifications and ultimately 

support crowd-sourced improvements on our model. The 

feedback form accepts input for whether the prediction was 

correct and a text input for the correct, with options powered 

by the same class list our model trained on. 

 

This feedback form makes use of another compact and pow-

erful piece of web technology, HTMX. HTMX is a JavaS-

cript library which extends the capabilities of HTML. After 

installing the library, there are new attributes available in 

  
Figure 8: Snippet of the HTMX-enhanced feedback form in pet-

result.html, showing dynamic breed–list loading upon checkbox 

interaction. 



 

HTML which enhance the hypermedia to more flexibly in-

teract directly with our Flask server. In our case, we wrap 

the form checkbox input in a div element, which includes 

hx-* attributes provided by HTMX. These attributes roughly 

translate to “the first time this element is clicked, GET the 

HTML from the ‘/breeds-list’ and insert it before the next 

button element”. The HTML stored at that endpoint includes 

another input element, along with a datalist element with all 

the human-readable dog breeds upon which the model was 

trained. The full application code is available in the zip and 

on GitHub. 

 
Figure 9: Landing page of the Breed Predictor application, featur-

ing a prominent call-to-action for uploading a dog image. 

 
Figure 10: Image upload form, which collects the pet’s name, 

age, gender, and photo before submission to the server. 

In Figures 9–11, we illustrate the end-user workflow of our 

web application. The landing page Fig. 9 invites users to 

discover their dog’s breed via a simple “Get Started” but-

ton. Upon initiation, the upload form Fig. 10 asks for basic 

pet metadata; name, age, gender and a JPEG image, which 

the server assigns a UUID and stores for model inference. 

Finally, the result view Fig. 11 presents the YOLOv11 dog 

detection with a confidence score (e.g., 91.25% certainty) 

of how strongly the model thinks the image is a dog along-

side the breed classifier’s prediction and corresponding 

confidence scores (e.g., 98.85 % for “Samoyed”). It also 

includes an inline feedback form that dynamically loads 

the full breed list to capture user-provided corrections. This 

seamless integration of detection, classification, and 

crowd-sourced feedback supports continuous model im-

provement in a user-friendly interface. 

 

 
Figure 11: Prediction result view, displaying the detected dog 

crop, YOLOv11 detection confidence, breed classification with 

SoftMax confidence, and an HTMX-powered feedback form for 

user correction. 

Conclusion 

This project presents a comprehensive and effective ap-

proach to automated dog breed classification. By leveraging 

a frozen XceptionNet backbone with a custom classification 

head, the model achieved high predictive performance, at-

taining 93.20% training accuracy and 90.20% validation ac-

curacy. 

 

Performance analysis across breed classes indicated strong 

generalization, with precision, recall, and F₁-scores exceed-

ing 0.90 for the majority of breeds. A small subset of un-

derrepresented classes exhibited lower performance, sug-

gesting potential avenues for future work in data augmenta-

tion and class balancing.  

The system was deployed as an end-to-end application using 

a Python-based technology stack. The backend was imple-

mented with Flask and SQLite, ensuring lightweight data 

persistence and seamless model integration. The frontend 

utilized HTMX to facilitate responsive image submissions, 

allowing real-time inference and display of results. Overall, 

the project demonstrates the viability of combining modern 

deep learning architectures with web technologies to deliver 

accessible and accurate breed identification tools for public 

use. 
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